The WebTP Transport Protocol, Architecture and Algorithms for Performance Improvement of Web-Based Applications

Introduction

Objectives of WebTP Transport

The WebTP Project

The objective of the WebTP project is to optimize the performance of web-based applications based on the preference of the user. Optimization of the user’s preference can take place (i) at the sender and/or receiver, such as the application level, any of the networking protocol stacks, or other aspects of the operating systems, or (ii) within the network, such as the routers and switches. The WebTP project takes the approach of fixing a sequence of conditions with decreasing degree of restrictions, and therefore achieves increasing levels of user’s satisfaction. Currently, the focus is at the application and transport layers of the end systems. Specifically, we assume that between a source-destination pair there exists a network path that has a random bandwidth and can cause random packet loss. A TCP-style congestion control/bandwidth allocation scheme, for example, gives rise to one such network path. The following example illustrates how the user’s utility can be improved under such an assumption.

Example 1 Suppose the user makes a request to retrieve a familiar web page, which contains numerous objects, such as images and blocks of text. Assume that he is allocated some fixed bandwidth in the network path. Hence, the total transfer time for the web page is fixed. If the user’s utility depends only on the time when the entire transfer of the web page is completed, then very little can be done to improve his utility. However, it is reasonable to assume that each object in the web page conveys some information relevant to the user and that the user receives certain utility as he receives each object. Then, the user can exploit the differences in the utilities he assigns to the objects. For instance, he might prefer a transfer order which gives him the most utility at any fixed time. In practice, the user can specify either the utility or the transfer order at various degrees of precision based on the knowledge he has about the page, or based on his general knowledge about a large number of similar pages. In a slightly different scenario, the user has minimal information on the page he is about to see, and cannot specify his preferences a priori. However, the server has some idea on what an average user prefers based on the experiences it has with a large number of users. In both of these situations, it is assumed that different transmission orders of the objects delivers different utilities to the user over time. In both of these cases, although the mechanisms of optimization are different, the assumptions are the same. That is, there are boundaries that separate objects within a transfer. The ordering relationship among objects needs not to be unique. The user receives additional utility at the time when an object is completely received, and hence, different transmission orders can be explored in order to improve the user’s satisfaction.

Example 2 Suppose the user opens a connection to a server and receives video programming, such as CNN’s news casting. While watching the news, he also browses the CNN web site and retrieves web pages. The user may prefer to receive the video at the highest available capacity and use the leftover bandwidth for browsing, or vice-versa. Furthermore, the user can use a separate bandwidth control application to dynamically adjust the bandwidth for each connection. To provide this capability to the user, some transport mechanisms and their associated APIs are needed. The scenario applies to information delivery/retrieval from rich content servers. A slightly more general scenario can also take advantage of such transport mechanisms. While watching the CNN video news, the user browses many web pages located in different geographical areas, instead of a single content server. All connections are bandwidth-limited at the same link in the network, which might be the user’s access line to the Internet, or a line at his Internet Service Provider’s access network.

The above are primary motivating examples for the WebTP project. Both examples illustrate some characteristics of today’s web-based applications. We briefly summarize them here. More details can be found in [Xia].

· Multiple network applications run simultaneously on an ordinary client computer, and each application may open several connections, possibly destined for different remote hosts.

· Multiple media types with a wide range of quality requirements coexist. In terms of connection duration, some connections have short lifetime, in the order of sub-seconds, and others are stream-based long-lived connections, such as broadcast video. In terms of bandwidth requirement, as DSL and cable modem technologies become available, video applications with bandwidth in the order of megabytes per second are likely to come. In terms of reliability requirements, file transfers and video/audio delivery have very different requirements. In terms of the response to the network congestion situation and bandwidth fluctuation, some real-time applications are completely inelastic and others can adapt to the network conditions in application-specific ways. Applications such as file transfers are mostly elastic and can delegate the control to the transport layer.

· Interactive applications, such as web browsing and Internet games, have become significant. Communications of this type are transactional, or request-response oriented, and the connections typically have short life span. The reply to each request is normally an object with well separate semantic boundary and identifiable utility to the user. The ordering relationship among the replied objects is very relaxed. Even in the case of stream-based media, there are identifiable boundaries within the stream.

· “Greedy” applications without congestion control have become common, which endanger the Internet’s stability.

Significant modifications to the transport layer are required by these applications. A recent IETF meeting [RUTS98] has summarized some of the new transport requirements. The WebTP transport architecture is designed to satisfy most of these requirements, in addition to its basic philosophy of providing mechanisms to support user-centric optimization. The designers of the WebTP transport layer attempt to build a comprehensive, yet modern transport protocol based on the collective research and experiences of the last two decades. Features listed in [RUTS98] that are supported by the WebTP transport protocol are printed in italic below.

· quick establishment/activation of connections, which is in tension with security considerations (authentication, flooding - not holding state)

· support for application level framing

· visibility into network conditions; control over reliability

· the ability to supercede previous application messages

· want to deal with transport at a 'frame' granularity (record marking)

· per-message priority control

· minimize state requirements; think of servers with 1e6 connections

· muxing: PDUs muxed, delivered ASAP. Want ACK aggregation across the different communication streams; isolated flow-control; QoS consciousness between the streams.

· failover: transport connection can survive across change in IP address

· on connection attempt, SYN timeout are viewed as expensive

· mid-stream, need to switch to backup interfaces

· Congestion control

· slow start hit (bursty vs. even flow)

· snappy after idle (bursty vs. even flow)

· optionally becoming aggressive during loss (for control traffic whose job is to stem the congestion); e.g., FEC

· transaction-level reliability

· small footprint

· ability for application to indicate "a reply is coming" versus "no more coming now, go ahead and ack, don't delay"
The designers of WebTP have classified the transport functions according to a number of criteria. Efforts have been made to separate the network functions and the application support functions, reliability control and congestion control, and congestion control and rate allocation. The first separation has resulted in the distinction of a connection and a pipe. A connection, which exists between a pair of applications on two hosts, provides the application with a logical view of the communication channel, as specified by the application whenever possible. It does not participate in the network monitoring and control. A pipe is an abstraction of the network path between the host pair. It monitors the network path and participates in the control of the network path. Since many connections can coexist between a pair of hosts, these connections are multiplexed into a single pipe. Because connections are lightweight objects compared with the pipe, this distinction allows applications more freedom in using the connection structure without performance penalties.

The conceptual separation of reliability control and congestion control helps the transport designers to trade-off flexibility with efficiency. Since reliability control is inherently an application support function, it should cater the specific requirement of each application. Its tight coupling with congestion control hinders this capability. On the other hand, by sharing certain aspects of reliability control and congestion control, the protocol can be made simpler.

With the first two notions of separation, we aimed at designing a protocol with integrated congestion control at the pipe level, and highly customizable reliability control at the connection and ADU levels. By sharing loss detection between the two, the complexity of the protocol is well managed.

The separation of congestion control and rate allocation is possible because they typically operate on different time scales. It is also necessary when the quality of service is concerned, since the notion of rate ultimately has meaning at the connection level while congestion control occurs at the pipe level. This separation allows us to design different strategies to cope with network congestion and to satisfy individual connection’s need.

We will summarize the transport capabilities of the WebTP transport layer.

· The transport supports fine-grained and application-specific control, which includes

· Application Level Framing (ALF). The transport layer is aware of and respects Application Data Unit (ADU) boundaries. Dynamic management of ADUs is possible.

· Per-ADU-based reliability control.

· Priority control at the ADU level.

· User-centric bandwidth and priority management for the connections.

· Congestion monitoring is integrated across connections between a pair of network hosts. However, congestion control can be at the granularity of a connection. Trade-off among connections at a very short time scale is possible.

· The network condition is visible to the application through a set of rate-related APIs and through backpressure from the transport queues. The application and connections have control over the bandwidth usage.

· Because the application buffers most of data, the application can dynamically control the data it will send based on the network condition and application requirements.

· WebTP support both traditional three-way handshake for establishing reliable communication channel. It also has a feature for quick establishment/activation of communication channels, which does not compromise security arbitrarily.

· The transport is versatile and QOS conscious. It supports four traffic classes: short interactive traffic, bulk file transfer, real-time and non-real-time media streams.

· The protocol has a good level of generality. WebTP can emulate TCP and UDP in a number of ways. It can also be configured as a mixture of TCP and UDP in various ways.

· The protocol design is modular and flexible. Many control algorithms of the WebTP protocol can be replaced as new algorithms are developed.

· Processing efficiency and ease of implementation are both important considerations at all stages of the protocol design.

Model of optimization

In this paper, performance optimization for web-based applications is restricted to the applicatoin layer and the transport layer. Optimization in other possible areas is not considered. For example, optimization at the host’s operating systems and optimization at or below the network layer are excluded from consideration. All optimization occurs at the edge of the network, i.e., the IP hosts. We do not consider optimization for the network routers. We assume that the network behavior is fixed.

Furthermore, the optimization occurs within a singe connection or across connections for the same user. We assume each user is allocated a fixed network resource, possibly time-varying. We do not specify how the network resources are allocated among users and what the possible resource-sharing policies are. For this will necessarily involve the network layer at the hosts and the network entities, such as routers and switches.

The model is as follows. A single user sets up one or more connections to the remote server(s) and requests data. All connections are bottlenecked at the same place, most likely at the users access line to his ISP or at the access point to the backbone (need references to support this assumption). Unless indicated otherwise, we assume the bottleneck capacity is time-varying but given, i.e., the bottleneck capacity is independent of the transport’s control. In separate paper, we will examine how the control algorithms at the end systems affect network-wide resource allocation across users. The model is shown in figure 1.

[image: image6.wmf]

Application 1

Application 2

Application 1

Application 2

Host 1

Host 2

Connections

Pipe

Figure 2

Figure 1

We further consider two levels of user-centric optimization. At the first level, the network capacity is allocated to the connections based on user’s preferences. At the second level, within each connection, the transmission of ADUs is ordered in such a way that the user’s utility is optimized.

We also assume the communication path can be lossy. This has important implications to the reliability requirement of traffic. The user can specify whether and when to retransmit lost packets. Differentiated treatment of the traffic’s reliability level can be advantageous. For instance, suppose the entire ADU becomes useless when one packet from it is lost, and it is too late to retransmit the packet. Then, discarding the entire ADU helps to save bandwidth and to speedup the transmission of later ADUs.

Scope of this paper

In [Xia], we partitioned the transport functions into network functions, which are more related to the networking aspect and application-support functions, which are more directly linked to applications. It is important to point out that this partition of the transport functions is not completely sharp. For example, rate allocation or scheduling is an example of both, and is dependent on the network conditions. In another example, since the two sets of functions often require the same underlying knowledge about the network, network measurement can serve for both purposes. In the example of TCP, congestion control is a network function. Rate allocation is implicitly accomplished through the congestion control algorithm and therefore is more a network function. Reliability control is primarily an application-support function, with the exception that loss detection is also used to adjust the congestion window size. This rough partition of transport functions roughly corresponds to the layered structure of the protocol, which we will explain in more details in the case of WebTP. We would like to point out that the focus of the current paper is to design a transport architecture that can improve the performance of application. Therefore, the emphasis is on the application support functions. As for the network functions, we assume a TCP-style sliding-window congestion control algorithm, and avoid discussing genuine alternatives to this kind of algorithms. Neither will this paper discuss in details the possible significant changes to the TCP congestion control algorithm. We feel both of these are broad topics that need to be carefully studied separately. However, our transport design is meant to be flexible so that it is open to new network control algorithms. In other words, our design provides infrastructures for incorporating a broad range of algorithms. In various places of the paper, we will discuss possible new or improved algorithms based on our intuitive understanding and show how they might be implemented in our framework.

This paper discusses the motivation of the transport protocol, defines the essential elements of the protocol, describes one implementation of the protocol and shows examples how different types of applications can use the protocol. In the design of a transport protocol, it is important for the designer to go into implementation details, since the ease and efficiency of an implementation affects many design decisions of the protocol. For instance, they can affect the partition of functions between the application layer and the transport layer. They also influence the decision on the header format of the transport packets determine decision on what the protocol proper should implement and what should be left at the application. In short, an implementation can demonstrate the complexity and flexibility tradeoff of the overall system design.

The Overview of the WebTP Transport Architecture

[image: image1.wmf]Bottleneck

Link

Network

Connections

Client

Sever 1

Server 2

The layered structure of WebTP is shown in Figure 2. Between the application and the transport layer is the socket interface, resembling the Berkeley Socket Interface. The transport layer is divided into Flow Management (FM) Layer, where connections and ADUs are managed. The functions of the FM layer includes:

· connection setup, teardown and management

· pipe setup, teardown and management

· ADU management, which includes accepting ADUs from the application for transmission, receiving ADUs from the network layer and delivering of the ADUs to the application, segmentation of ADUs into packets and re-assembly of packets into ADUs, managing reliability of ADUs.

· Book-keeping of all records related to connections, pipes, and ADUs.

[image: image3.wmf]Application

Socket Interface

Flow Management

Scheduler

Congestion

Controller

Integrated Network Monitoring

Rate

Monitor

Figure 1

Network Control

Here we refer the duplex communication channel between a pair of IP hosts as pipe. A connection, on the other hand, terminates its two endpoints at the applications, and multiple connections can be multiplexed into a single pipe. Figure 3 illustrates the relationship between a pipe and the connections that are multiplexed into it. The connection in WebTP is a lightweight structure whose purpose is to provide the application with a simple logical view of the communication channel. A pipe, on the other hand, establishes the actual end-to-end path in the network, probes the available bandwidth on the path and performs some level of congestion control.

The layer below the FM layer is the Network Control (NC) layer, which at least has one Congestion Controller module for the pipe. It may optionally have Congestion Controller module for each connection, which works together with the pipe Congestion Controller in a hierarchical fashion to fine-tune the control for each connection. It also has a Scheduler module for the pipe and a Rate Monitoring module for each connection. This layer performs congestion control at the granularity of a pipe, and optionally at the granularity of a connection or an ADU. The Rate Monitoring module measures the bandwidth usage of each connection for sending and receiving traffic. The Scheduler schedules transmission of packets from each connection. The scheduler should respect the ADU boundaries in that it always tries to complete transmission of an ADU before starting transmission of a new ADU. The minimum implementation is a good pipe-level congestion controller. We intentionally leave the NC layer a flexible in hope for better control algorithms

The last layer from the bottom is responsible for monitoring the congestion situation of the network path, or the pipe, as well as for measuring the rate and other statistics of the network path that are relevant for the control algorithms. This layer is called the Integrated Network Monitoring (INM) layer. We believe that integrated monitoring of the network conditions across all connections in the pipe can better exploit the regularity of the statistics to be measured. These statistics provides basis for integrated congestion control over a pipe.

The main challenge in the transport design is to manage the complexity due to the required fine-grained control of reliability and integrated management of congestion, which requires the transport to manage both ADUs and connections.

The Transport Requirement of WebTP and APIs

The first issue is the partition of functions between the application layer and the transport layer. The objective of the transport layer of the WebTP is to provide flexible transport mechanism for enhancing user-perceived performance for a variety of web-based applications. By definition, the framing of ADUs is at the application level, since it is application-specific. For the same reason, the application is responsible for manipulating ADUs, such as ordering and dynamic re-ordering of ADUs, canceling of ADU transmissions, etc. Application should buffer the ADUs and only send them to the transport layer when they can be transmitted immediately. Since we expect very few ADUs will be buffered at the sender side of the transport layer, for simplicity, the transport does not support re-ordering of ADUs or canceling of ADUs. The transport level should also be ware of the ADU boundaries so that at the receiver side the transport can deliver data to the applications based on the ADU boundaries. The rest of the requirements need to be implemented at the transport layer. A set of APIs are needed so that the application and the transport can communicate about the requirements and the status of fulfillment of these requirements. The services provided by the WebTP transport layer can be classified into connection and pipe management services, ADU management services, and bandwidth management services. The details of the APIs are documented in [API].

Connection and Pipe Management Services

WebTP provides connection-oriented service. Ordinarily, a connection should exist before applications on two hosts can transfer any data. Unlike the connection in TCP, the connection in WebTP is a lightweight object whose only purpose is to provide the application with a handle on a transparent communication channel. Most of the network control function is delegated to a different object, the pipe. A pipe is an abstraction of the network path between two IP hosts, possibly shared by many connections. The distinction between the connections and the pipe reflects the view on the partition of the transport into application-support functions and network control functions. We will show later that, as one of the benefits of this partition, the network functions can be integrated across connections and are reusable. Another advantage of having both connections and pipe is that the application can freely use connections without worrying about performance hit from heavy protocol processing associated with network control. For instance, the application can open a new connection for each request of a short ADU.

The transport needs to provide connection and pipe related services to the application layer. More specifically, it should provide interfaces for connection setup and close, status report of connections and the pipe, and change of status.

Connection and Pipe Setup

When an application wants to communicate with remote hosts, it first opens a socket with the UNIX-style socket() and bind() calls [BSD].

socket(domain, type, protocol, flags);

int s, domain, type, protocol;

error = bind(s, addr, addrlen);

int error, s, addrlen;

struct sockaddr *addr;

where WebTP is among the choices for the protocol parameter. We add a type called SOCK_ADU for which WebTP is the default protocol. The precise meaning of this socket type is explained later. The parameter flag is used only when the protocol is WebTP. It is derived from the following constants.

FAST

0x01

INTERACTIVE

0x02

BULK

0x04

REALTIM_STREAM
0x08

BUFFERED_STREAM
0x10

SHARED_PIPE

0x20

DEDICATED_PIPE
0x40

CLASS_PIPE

0x80

FAST indicates that fast connection setup is requested. Each of the next four constants refers to one of the traffic classes (see later). The constants ending with PIPE are the types of pipes requested. DEDICATED_PIPE means the connection does not share pipe with other connections. A new pipe should be opened for the connection. SHARED_PIPE means the connection can share a pipe with any class of connections. CLASS_PIPE means that the connection shares a pipe with connections of the same class. This leaves the possibility of class-based pipe-sharing. At this moment, we assume that all pipes are of the SHARED_PIPE type for simplicity. Only one of the traffic classes and one of the pipe types should be selected for each socket.

The client application which initiates a connection uses the connect() call.

error = connect(s, serveraddr, serveraddrlen);

int error, s, serveraddrlen;

struct sockaddr *serveraddr;

The server uses listen() and accept() calls to accept client’s connection setups.

error = listen(s, backlog);

int error, s, backlog;

snew = accept(s, clientaddr, clientaddrlen);

int snew, s, clientaddrlen;

struct sockaddr *clientaddr;

When executing connect() with the SHARED_PIPE type, the transport first checks if the FAST flag is specified. If FAST is not selected, the transport looks for a shared pipe associated with the destination address of the connection. If such a pipe does not exist, the transport calls an openpipe() function and creates a pipe data structure. The connection data structure and the pipe data structure are linked together. Then the protocol sends a SYN packet to the remote host, trying to establish the pipe and the connection. Three-way handshake is necessary for establishing a pipe in this case. When the transport returns from connect(), both the pipe and the connection are established, or a “connection time out” error message is returned when the connection can not be established. At the server side, listen() calls a pipelisten() routine, which is ready to receive SYN packets. When a SYN packet is received, pipeaccept() routine is called and the pipe data structure is established. At this point, listen() returns. When, accept() is called, a new socket descriptor is generated and linked with the newly created pipe structure. In the case where a shared pipe already exists, a SYN packet is sent to establish the connection only. The SYN packet is automatically assigned as a reliable packet, and the transport is responsible for reliable delivery of the SYN packet.

FAST WebTP

If the FAST flag is selected with the socket(), the application indicates its desire for a fast connection startup, which improves interactivity and responsiveness of transactional applications. The reduction of startup time comes from the elimination of two sources of waiting before data can be transmitted. The first source is the three-way handshake in establishing a pipe. The second source is connection setup. FAST WebTP is capable of emulating connectionless services. In FAST WebTP, before the completion of three-way handshake, the transport of the sender side can start transmitting. When the receiver side receives data before the completion of three-way handshake, the transport can set up the socket and deliver data to the application. The application decides whether to accept the data. If either the pipe setup or the connection setup eventually fails, the transport at the receiver side needs to notify the application, and the application closes the socket.

At the client side, connect() call immediately returns without communicating with the remote site and the application can start to send or receive data. Simultaneously, the transport tries to set up the connection, and the pipe if necessary. If the client intends to receive data immediately after the connect() call, it won’t be able to do so until the connection and pipe are set up appropriately. It is a more interesting case when the client immediately issues send() after the connect() call. The data packet will use the sequence number picked by the transport layer. We next examine the details of different situations.

Suppose there already exists a pipe before the connect() call. The client can then send data packets immediately after the connect() call. The SYN bit needs not be set in any of the data packets. At the receiving side, which is the server side, a new socket is created when the transport first receives one of these data packets. Accept() returns with the new socket descriptor and then recv() returns with the data. Notice that no explicit connection setup takes place in the form of SYN packet exchange.

The situation is far more complicated when the pipe does not exist. The connect() call sends a SYN packet before it returns. At this point, the client can start sending data packets. It is possible that these data packets arrive before the SYN packet. In either case, a new socket is created, and accept() returns. Properly assembled data can be delivered to return the recv() call. Data read by the application before the completion of the three-way handshake has it FAS bit set. The application is required to issue a rejectdata() call to indicates whether it accepts or rejects the data. Data can be rejected for many reasons, such as security reasons. When this happens, the receiver-side transport rejects all data received before the completion of the three-way handshake and will not acknowledge any portion of the data after the pipe setup is completed. If the data is reliable, sender-side transport waits for the completion of the three-way handshake and then retransmits data from the very first packet. If the data is unreliable, no action will be taken be either side, and the data is considered permanently lost. If the data is accepted, it is still possible that the transport later decides not to setup the pipe and the connection. Possible reasons are the three-way handshake cannot be completed, or the SYN packet has never been received. The transport issues an upcall to the application about such a decision so that the application can take actions such as rolling back the received data and/or terminating the process/thread that is receiving on that connection. The application is also responsible for closing the socket that will not be used again. Data packets still buffered at the transport layer will be dropped. The transport at the client side will simply time out the connection and notifies the application. Before the setup of the pipe is completed, the server can also send data to the client. The treatment of data with FAS bit set is the same at either side.

The basic rule for acknowledgment is that the transport does not acknowledge any data packets until the application indicates its acceptance of the packets through rejectdata() call. The SYN packet does not contain data and is always reliable. The transport is responsible for retransmission of lost SYN packet. If the initial packets are not properly congestion controlled (possible because the pipe has not been set up yet), only up to a few data packets are allowed to be transmitted.

FAST WebTP is designed so that some applications can avoid one round trip time (RTT) for setting up the connection and the time taken by the three-way handshake. It is suitable for applications with stringent requirement for responsiveness. Three-way handshake prevents acceptance of data from terminated connections. After three-way handshake is completed, the transport might discover that the accepted data are from terminated connections. Hence, FAST WebTP is useful either when receiving the erroneous data does not matter or when the application has the ability to roll back and replace the erroneous data with new data.

Web browsing presents a special case for the former situation. Imagine the client makes a GET request of web page. The GET message is sent to the server while three-way handshake is underway concurrently. The server temporally accepts the connection. It verifies that the GET message does not lead to security breaches and replies with the html file when the transport is in the second step of the three-way handshake. The replied html file and the SYN+ACK are very likely to arrive at the client in close proximity in time. From the client’s point of view, it is only necessary to complete the second step of the handshake for it to accept the data with confidence. Therefore, it is likely for the client to save one round-trip time.
Connection Classes and Bandwidth Allocations Provisions

WebTP supports four classes of connections, corresponding to short interactive flow, bulk file transfer, real-time stream and non-real-time stream (or buffered stream). The connection class is specified by the option parameter of the socket() call. It is up to the implementation to take advantage of this information. For example, the scheduler can give priority to one class in the absence of explicit rate requirement. The congestion manager may take less aggressive approach of enforcing congestion control for short interactive flows or real-time stream when their average rates are much smaller than the measured total available bandwidth.

WebTP has a set of APIs that allow the application to specify the bandwidth for each connection when it is opened. Adjustment of bandwidth is allowed during the lifetime of a connection. The application can query the status and rates of connections that belong to the same user. A bandwidth control application can take advantage of these provisions and control the rate assignment for a set of connections of the same user. The set of APIs are:

int getsockopt(int s, int level, int optname, void *optval, int optlen);

int setsockopt(int s, int level, int optname, void *optval, int optlen);

int getallsockets(int id, int *s, int slen);

Getsockopt() and setsockopt() manipulate the options associated with a socket. Options may exist at multiple protocol levels; they are always present at the uppermost ``socket'' level. When manipulating socket options, the level at which the option resides and the name of the option must be specified. To manipulate options at the socket level, level is specified as SOL_SOCKET. To manipulate options at any other level the protocol number of the appropriate protocol controlling the option is supplied. For example, to indicate that an option is to be interpreted by the WebTP protocol, level should be set to the protocol number of WebTP, which is 100.

In the case of WebTP, we define the following options together with their meanings. All options are for the sending side of the connection.

PRIVATE
optname
optval type
optval

0
TRAFFIC_CLASS
char*
Name of the traffic class. The scheduling of WebTP outgoing traffic depends on the traffic class. Currently four classes are defined: "interactive", "bulk", "realtime_stream", and "buffered_stream". Class names can be heirarchical, such as "realtime_stream.elastic" or "realtime_stream.inelastic". The administrator of host defines different traffic classes and corresponding policies for bandwidth allocation. All available traffic class names are listed in /etc/webtp_classes.

1
AVAILABLE_RATE

(only valid for getsockopt)
float*
Available rate in bits per second. This is essentially the rate available from the pipe.

2

CURRENT_RATE
float*
Available rate in bits per second. Getsockopt() returns the current sending rate of the connection. If the application wants to specify a constant rate at which it wishes to send, it can call setsockopt(). If such a rate cannot be guaranteed by the scheduler, setsockopt() will fail.

3
RTT
(only valid for getsockopt)
float*
Round-trip time, measured in microseconds.

Getallsockets() asks the operating system to return all sockets owned by a user denoted by id. With these APIs, a control application can manipulate the rate on behalf the user at the granularity of connection, connection class, or application. The final rate allocation depends on the requested rates of the current user and competing users, as well as the scheduling policy at the server and network routers. Congestion control can also interfere with the rate allocation on a shorter time scales. The net effect of all these factors is a subject of further study.

Notice that when the total specified rates is unsustainable at a scheduler, rates will be interpreted as weights for a weighted fair-queueing scheduler. In such cases, rate-based schedule can also be interpreted as priority-based schedule with two priority levels, when the rate ratio of two connections are very large.

One subtle point is that a connection is considered full-duplex only to the extent of connection setup. A connection can have different rate specifications for its two directions. However, since the rate information for each connection is only kept at the sending host, no difficulty arises from this ambiguity.

In a typical application, a client application makes a request to set up a connection with the server. The client’s application-level request message contains a rate requirement for the connection in the direction from the server to the client. The server application interprets the rate information and makes a setsockopt() call to set the new rate.

Connection and Pipe Close

WebTP uses the socket-style close() and shutdown() for terminating connections, both of which have the similar meaning as in the Berkeley Socket Interface [UNIX]. Closing a connection will not automatically close the pipe. The transport is responsible for closing a pipe when the pipe has been idle for some fixed amount of time. WebTP uses a similar set of states to those in TCP, except that the set of states are split between the connection and the pipe. (See later)

ADU Management Services

Supported Reliability Requirements

WebTP supports ADU-level reliability, which is the main reason why the transport should be aware of and respect ADU boundaries. When the application makes a request for transmission of ADUs, the sender-side application specifies whether each ADU is reliable or unreliable. A reliable ADU is guaranteed to be delivered from the sender to the receiver without an error. This necessarily involves retransmission of lost packets for the ADU. Lost packets for an unreliable ADU are not retransmitted. At the receiver side, if all packets of an unreliable ADU are received correctly, they are assembled into the ADU and delivered. If the receiver decides that some packets of the unreliable ADU are lost, the complete ADU is dropped and the transport notifies the application that some unreliable ADU is dropped. Since a single packet loss triggers the dropping of the entire unreliable ADU, the application should be aware of this fact and tries to size the ADUs so that each will fit into one or a few transport packets. Note that the size of unreliable ADUs is limited by the size of the re-assembly buffer at the receiver side. This is not the case for reliable ADU, since the transport can deliver partial ADUs to the application.

WebTP guarantees that no more than one copy of each ADU is delivered to the receiver by detecting and dropping duplicated packets. WebTP also guards against late packets from earlier terminated connections through three-way handshake. FAST WebTP provides this feature after the completion of three-way handshake. It has a brief vulnerable period before the completion of three-way handshake.

WebTP does not provide transport-level guarantee of in-order delivery of ADUs within the same connection. The decision is based on the assumption that the ordering relationship of data is encapsulated within each ADU and very often ordering among ADUs is not required. We gain the benefit that ADUs can be delivered to the application quickly at the receiver side. An incomplete ADU will not block other completed ADUs. This also makes it easy for the transport to transfer expedite ADUs out of order. When sequencing of ADUs is necessary, it can be done at the application level with the help of library functions and application level framing.

Blocks of data are sent through the socket interface via UNIX style send() and recv() calls.

int send(int sockfd, char *databuff, char *header)

int recv(int sockfd, char *databuff, char *header);

where databuff is the starting address of the data portion of the ADU and header is the ADU header. Since the size of ADUs varies and the header length is fixed, the header and the data portion are kept in different data structures. Each send() or recv() call can pass a complete ADU or a partial ADU. The ADU header structure is defined as follows:

struct ADU_header{

int
name;

int
segnum;

int
datalen;

int
option;

};

In the send() call, the application is responsible for choosing a unique name for ADUs within each connection. In the recv() call, the transport is responsible for choosing a unique ADU name. The ADU name is needed since we allow passing partial ADUs across the socket interface. The passing of partial ADUs can be interrupted by other partial or complete ADUs for two reasons. First, after sending a partial ADU and before its completion, the application may decide to reorder the unsent ADUs. When it does send() again, the application can send a different ADU. Second, the ADUs can arrive at the receiving side out of order, and hence can be delivered to the application out of order. The ADU name can also be used by the application to order the received ADUs. Segnum is the segment number, which is the initial byte number of the current ADU segment in the complete ADU. For example, if the current ADU is a complete ADU or the first segment of an ADU, segnum is 1. Datalen is the length of the ADU data portion. Option is the derived from the following constants.

Constants
Hex Values
Semantics

ADU_END
0x01
the end of an ADU

ADU_RELIABLE
0x02
ADU is reliable

ADU_URGENT
0x04
ADU has urgent priority

ADU_FAST
0x08
Used in recv() only. ADU received before the completion of three-way handshake in FAST WebTP

One of the objectives of WebTP transport is to support dynamic ADU rendering at the application layer. For instance, the application can order and reorder ADUs, change the reliability requirement for an ADU, or cancel the transmission of unwanted or outdated ADUs. For that purpose, the application should be able to buffer most of its unsent data in its own address space. The transport layer should allocate buffer spaces for each connection based on the principle that the transport layer should buffer minimum amount of user data subject to the consideration of system call overhead. Our protocol design allows dynamic buffer management at the transport layer[Algo]. The actual buffer size may depend on the transmission rate for that connection, and depend on all connections sharing the same pipe.

By default, the send() call is non-blocking. The return value of send() indicates how much data has been sent, and serves as a backpressure from the transport to the application. The application can then evaluate the situation and choose appropriate strategy for sending data. In particular, it can scan through the buffered data at the application layer and manipulate them based on its need. When sending data, the application should determine the frequency of send() calls based on a number of considerations. For instance, delay sensitive data warrants the application to call send() frequently. In other cases, the application can chose a large chunk of data to send in order to reduce the frequency of the send() system call. An appropriate scheme should balance three things. The transport has enough data to send and is not idling while the network capacity is available. The application keeps most unsent data for dynamical rendering. The number of system calls should be at a level that does not overburden the CPU.

When receiving data from the transport, the application calls recv(). The recv() call is blocking by default. The transport fills the receiving buffer up to the requested amount of data, and returns. The transport tries to return as quickly as possible subject to the consideration of system call overhead.

The application also needs an API to reject any received ADUs with FAS bit set, i.e., those ADUs which arrive before the proper set up of the connection and the pipe. This is done with the rejectdata() call.

int rejectdata(int sockfd, int t)

where t = 0 indicates data have been accepted. Otherwise, they have been rejected.

Supported ADU Priority Levels

WebTP supports two priority levels at the granularity of an ADU: the urgent priority and the normal priority. The urgent priority ADU is given scheduling priority for transmission at the sender, and is delivered to the application with minimum delay at the receiver side. The details are left to the implementation. Since supporting urgent ADU put more stress on the processor (e.g. due to context switching) and can negatively affect other ADUs, it is recommended that urgent priority is used infrequently and is applied only to ADUs of small sizes. Infrequent measurement and/or control ADUs are examples that may use the urgent-priority service. The ADU priority information is encoded in the ADU header.

ADU and Packet Formats

ADU Framing

Complex ADU framing should be left to the application, as the name Application Level Framing (ALF) implies, possibly with the help of libaries for different styles of ADU frames. For example, a video or audio frame may look like RTP frames. However, there should be an agreement between the transport and the applications on the common part of the ADU frame so that ADUs can be passed across the socket interface. In our scheme, each ADU frame is accompanied by a header.

Packet Format

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Packet number |

+-+

| Acknowledgment number |

+-+

| Acknowledged Amount |

+-+

| ADU number |

+-+

| Segment Number |

+-+

| Source Port |U|A|R|S|F|R|E|F|

| |R|C|S|Y|I|E|N|A|

| |G|K|T|N|N|L|D|S|

+-+

| Destination Port | C | |

| | L | RES |

| | A | |

+-+

| Data | | |

| Offset| RES | Window |

| | | |

+-+

| Checksum | Options |

+-+

| Options | Padding |

+-+

| data |

+-+

 WebTP Packet Header Format

The first three header fields are used by the congestion manager for congestion control and loss detection. The rest of the fields are used mostly in the FM layer. Their meanings are as follows.

Packet number (PN): The sequence number of the starting byte of data contained in the packet.

Acknowledgement number: The starting byte number for the next packet expected.

Acknowledgement amount: The number of bytes acknowledged.

ADU number: The number picked by the transport for ADU naming.

Segment number: The index of the first byte of data contained in the packet within the ADU.

A value 1 for the control bits has to following meaning.

URG – (Urgent) This is an urgent packet.

ACK – (Acknowledgement) This packet carries acknowledgement information.

RST – Abort the connection

SYN – (Synchronizaton) This is a synchronization packet.

FIN – This is the last packet of the connection.

REL – (Reliability) This is a reliable packet.

END – (End) This is the last packet of the ADU.

FAS – (FAST WePTP) The packet is sent before the completion of three-way handshake.

CLA – (Classes)

00 – Short interactive traffic

01 – Bulk file transfer

10 – Real-time stream

01 – Non-real-time stream (buffered stream)

In FAST WebTP, the SYN packet from the client has its FAS bit set. The acknowledgement packet for the SYN packet has its ACK, SYN and FAS bits set. All data packets transmitted before the completion of pipe and connection setup have their FAS bit set. All acknowledgement packets to data packets with FAS bit set have their own FAS bit set as well.

The rest of the fields have the same meaning as TCP [RFC793]

Packetization and Reassembly

Conceptually, the congestion management is a new layer with its own header. Packetization is performed in two steps, one at the flow management layer and one at the congestion management layer. The Packet number, Acknowledgement number and Acknowledgement amount fields are prepended at the congestion management layer to form a complete packet. The rest of the packets are formed at the flow management layer.

Protocol Implementation

Data Structures

Conceptually, we need control structures, which are called control blocks, for each connection, pipe, ADU and packet. ADU and packets also have data associated with them. We first express each of these control blocks graphically for easy understanding.

Connection Control Block

Socket
Pointer to the socket data structure

Local Port

Local Address

Foreign Port

Foreign Address

Route

Options

Mcast Options

Connection Monitor
Rate and packet loss, etc

Send ADU List Urgent
Sending side ADU list, with urgent priority

Send ADU List Normal
Sending side ADU list, with normal priority

Next Byte to Send Urgent
Pointer to the next byte to send within an ADU, urgent priority

Next Byte to Send Normal
Pointer to the next byte to send within an ADU, normal priority

Retransmission Packet Queue
A queue of packets waiting to be retransmitted

Send Packet List
Sending side list of packets, already sent

Retransmission Packet Queue
A queue of packets waiting to be retransmitted

Send buffer Size
Total buffer size of the send buffer

Send Data Size
Current total buffer occupied by the data sent or to be sent

Received ADU List Urgent
Receiving side ADU list, with urgent priority

Received ADU List Normal
Receiving side ADU list, with normal priority

Receive buffer Size
Total buffer size of the receiving buffer

Receive Data Size
Current total buffer occupied by the data received

Protocol/Pipe Control Block Pointer

Pipe Control Block

Connection List

Pipe Monitor
Pipe measurement values, such as rate and loss, etc

Congestion Window Size

Timer
Used to timeout an inactive pipe

MSL
Maximum segment (packet) length

Even Sequence Number
Even sequence number in the last transmission

Odd Sequence Number
Odd sequence number in the last transmission

Send buffer Size
Total buffer size of the send buffer for all connections sharing the pipe

Send Data Size
Current total buffer occupied by the data sent or to be sent for all connections sharing the pipe

Receive buffer Size
Total buffer size of the receiving buffer for all connections sharing the pipe

Receive Data Size
Current total buffer occupied by the data received for all connections sharing the pipe

Sent Packet List

Pipe Monitor Pointer
Points to the pipe monitor device

Scheduler Pointer
Points to the scheduling device

Scheduler Control Block

(To be Written)

ADU Control Block (For both sending and receiving ADU)

ADU Name
Used to deliver partial ADUs to application

Starting Byte
The starting byte number of the data block within the ADU

End of ADU
The partial ADU is the end of an ADU

Total Bytes
Total number of bytes of the data block

Data Pointer
Address of the beginning of ADU data location

Reliability
Reliability level

Timer
Used to timeout ADU

Connection Control Block
Pointer to connection control block

Packet Control Block for Sent Queue

Data Pointer
Beginning of packet data address

Length
Packet length in number of bytes

Packet Header
Pointer to the packet header for segmentation

Packet State
Indicates the state of the packet

Loss Count
How many times that packet has been lost

ADU Control Block
Pointer to the ADU control block

Segment Number
The position of the first byte within the ADU

End of ADU
1 indicates the packet is the end of an ADU

Time to Send
Time instance when the packet is sent

A packet can be in one of the following states.

PACKET_SENT
Packet has been sent and not yet acknowledged

PACKET_ACKED
Packet has been sent and acknowledged

PACKET_LOST
Packet has been sent and is lost

PACKET_NOTSENT
Packet has not been sent

Connection and Pipe Management

(To be written)

Data Management

The Flow Management Layer maintains four ADU queues for each connection, the sending queue with urgent priority, sending queue with normal priority, the receiving queue with urgent priority and the receiving queue with normal priority. Each queue is a linked list of ADU control blocks and the actual ADU data is pointed by its control block. Each connection also keeps pointers to the starting byte within the ADU for the next transmission. A data block can be a partial ADU instead of a complete ADU. The data block is cleared from memory,

· at the sender side, for a reliable ADU, after the data block is completed sent and acknowledged.

· at the sender side, for an unreliable ADU, after it is completely sent or after it is partially sent and some packets from the ADU have been lost.

· at the receiver side, for a reliable ADU, after it is delivered to the application. (In FAST WebTP, also after rejectdata() is called.)

· at the receiver side, for an unreliable ADU, after it is delivered to the application or one or more packets have been lost. (In FAST WebTP, also after rejectdata() is called.)

The control block is cleared after the complete ADU data block is cleared from the memory, or when the transport decides to drop the unreliable ADU.

[image: image2.wmf]Control Blocks

Data Blocks

Each connection also maintains a retransmission queue, which is a list of packets scheduled for retransmission. When an acknowledgement for a packet comes, that packet is marked as having been acknowledged. If a loss is inferred for a packet, the loss count is updated and retransmission is scheduled for a reliable packet. Each connection maintains a queue of packets that have been sent. The packet queue indicates the actual transmission order for packets from this particular connection. This queue is checked frequently for clearing data blocks.

Connection Level Scheduling

Urgent ADUs and retransmission packets take precedence over normal ADUs, and urgent ADUs have higher priority than the retransmission packets. Whenever a connection has urgent ADUs or retransmission packets to send, it inserts them into the urgent ADU queue or retransmission packet queue.

Data Services

The packet sequence is a shared addressing space by all connections sharing the same pipe. Acknowledgement is based on the Packet number (PN). Demultiplexing of packets and reliability handling uses PN in conjunction with locally stored data structures. Here is how it works.

Sender Side:

The congestion manager of the sender sends packets sequentially. The receiver acknowledges all received packets
. The sender can then detect a packet loss in the TCP style. At the congestion manager, the sender keeps a mapping between PN and the actual packet so that it knows everything about the lost packet. The congestion informs the appropriate connection and ADU about the lost packet. If the lost packet is reliable, a retransmission is scheduled by the connection. The retransmitted packet will take a different congestion control PN. If the lost packet is unreliable, the complete ADU is dropped and the application is notified about the loss. The detailed congestion control algorithm is in [Algo].

Note: Retransmitted packet should always take priority, since the congestion control and bandwidth probing algorithm may depend on it. In the TCP-style congestion control, the congestion window cannot be advanced unless the loss packet is retransmitted successfully. One implementation is to re-send the lost packet immediately. We can modify this algorithm by allowing the window size to increase for the subsequent acknowledged packets. By doing so, we are not compelled to retransmit the lost packet immediately, giving even higher priority for other packets.

Receiver Side

When a packet is received, the congestion management layer first process it based on the congestion management header information. This includes sending appropriate acknowledgment packet back to the sender. Notice that the receiver is capable to detect packet loss. However, it is difficult to infer to which connection the loss packet belongs. When a packet is received, it is demultiplexed and sent to the connection at the flow management layer with minimum delay, where ADU reassembly takes place. For every connection, the flow management layer maintains an urgent ADU queue and a normal ADU queue. The urgent ADU queue takes priority over the normal ADU queue when the transport returns recv() call. ADUs should be delivered as soon as possible to improve the perceived response time for interactive applications and to secure the delay bound for stream-based media delivery. The transport also needs to balance the system call overhead and the timeliness when making a delivery decision. The amount of delay can be traded off against efficiency. Although it is desirable to deliver data on ADU boundaries, in practice, there has to be an upper bound on the amount of data that can be accumulated before a delivery. Hence, both a complete ADU and a partial ADU are eligible for delivery. The lower bound should be optional. Within an ADU boundary, the transport is responsible for in-sequence delivery. Thus, a partial ADU can be delivered to the application provided all its previous segments are delivered.

The transport makes the decision when to deliver ADUs to the application or when to drop incomplete unreliable ADUs. The transport is responsible for choosing a name for each ADU. Hence, the application can identify each ADU unambiguously. A partial unreliable ADU needs to be timed out if some packets from it are lost.

Network Control Algorithms

Each pipe is managed by a set of modules of congestion monitor, congestion controller, rate monitor and scheduler.

Congestion Monitoring

WebTP uses a TCP-style sliding window protocol for integrated congestion monitoring. The underlying assumption is that the network does not support differentiated treatment to the connections that share the same network pipe. In that case, it can be argued that an integrated scheme to monitor the network congestion or to probe the available bandwidth is beneficial (list references). The simplest congestion monitoring method uses the packet sequence number and a congestion window in ways similar to TCP [Algo]. The window size is increased with successful transmission of packets and decreased when a loss is detected. On the side, WebTP also has a rate-monitoring device for the pipe, which simply measure the number of bytes transmitted and compute their moving average.

Loss detection shares the same packet sequence number with the congestion monitoring. The transport detects a loss when there is a gap in the sequence number or when the timer times out, similar to TCP-Reno. It then notifies the connection about the packet loss.

Bandwidth Probing

(To be written)

Congestion Control

The simplest congestion control scheme is to disallow new packets to be transmitted when the total number of outstanding packets reaches the congestion window size. This TCP-styled scheme together with the integrated congestion monitoring result in an integrated congestion control, similar to the congestion manager in [Balakrishnan].

In the current network, connections are either congestion controlled rigorously with TCP, or uncontrolled with UDP. There should be plenty of room in between these two extreme cases. For instance, for applications that ask for very little bandwidth but have very stringent delay requirements, the congestion control can be a little relaxed. WebTP allows a connection borrow certain amount of credits so that the total number of outstanding packets can exceed the congestion window size. This is feasible since the window reduction on a packet loss is generally more than necessary.

WebTP combines a close-looped window-based control and an open-looped rate-based control in an effort to reduce the packet loss. Window-based control enforces the conservation principle [Jac88] that a packet is not released into the network until another packet has exited the network. This principle has been proven stable in practice, but is also somewhat conservative. An even worse problem is that it causes more packet loss than necessary by continuously increasing the traffic rate until a packet is lost, and it lacks a good loss-detection mechanism. Consequently, packet loss can be frequent and expensive. More specifically, a few factors contribute to the frequent packet loss in TCP-style congestion control. First, the slow start connections rapidly ramp up their rate and can quickly causes a large number of packet losses. Frequent connection arrival leads to frequent packet losses induced by the slow-start phase. Second, packets can be dropped during the normal operation of congestion avoidance. This source of loss depends crucially on the buffer size at the router. When the buffer size is relatively small, the loss can be significant. It also depends on the number of simultaneous connections. Insufficient buffer sizing and large number of simultaneous connections can both lead to significant losses. The central issue is that the window-based scheme only tells whether a packet is lost or not, and it does not tell what the average sustainable rate is. In WebTP, the rate-monitoring device for the pipe can tell the latter information. It is, therefore, possible to use both the window information and the rate information to better control the traffic. WebTP tries to reduce the packet loss in three ways. First, through pipe sharing, only the very first connection needs to start in the slow-start phase. Later connections normally start in congestion avoidance phase. Not only can packet loss ratio be reduced, but connections can also start at a higher rate than they would if they start in slow-start phase. For the interactive connections, higher starting rate means better response time. Second, WebTP keeps a pipe alive and the rate information remembered for a fixed amount of time after all connections have ended. The pipe can be reused when a new connection starts. The new connection starts in slow-start phase and changes to congestion avoidance phase as the connection rate exceeds the recorded rate. It can be argued that since rate is an average quantity over certain time interval, the error in the rate measurement is smaller than that in the measurement of window size, which is an instantaneous quantity. Furthermore, due to the temporal locality of the network traffic load, rate information should be relevant for a long period of time. Hence, using rate should outperform using window size in terms of robustness. Finally, rate is also used in the congestion avoidance phase to further reduce the packet loss ratio. In the normal operation of congestion avoidance, the window size increases until the measured rate is near the recorded rate measured by the previous bandwidth probing. After that, the window size stops increasing. Every once in a while, the bandwidth is probed again by increasing the window size until packet loss is detected. This will invalidate the previous rate measurement and a new measurement is recorded. In short, WebTP reduces the frequency of loss-based bandwidth probing technique.

The specific control algorithm is in [Algo].

Connection Rate Monitoring and Scheduling

The rate of each connection is measured continuously using a traffic goodput counter for each prescribed measurement interval. This information is used in the replies to the set of rate query APIs. Rates can be measured in two ways: based on acknowledgement or based on the transmitted packets. In the former case, the traffic counter is incremented after a new ACK packet is received. In the latter case, the counter is incremented each time a packet is transmitted. If a packet loss is detected, the counter is decreased by the amount corresponding to the data contained in the packet. In the case of unreliable ADU, the dropped ADUs are not counted.

A separate counter is used to count the total amount of traffic originated from the connection, including dropped packets.

Packets from urgent ADUs take strict priority at the scheduler. Each connection maintains a queue of urgent ADUs, which is serviced on the first-come-first-serve basis. We also assume that urgent ADU constitutes a small fraction of the available bandwidth of the pipe. The urgent queue can borrow credit to transmit packets even when the number of outstanding packets is larger than the congestion window size. In other words, the urgent queue is subject to partial congestion control.

Each connection also maintains a retransmission queue, which has a lower priority than the urgent queue but higher priority than the regular traffic. Packets from this queue are serviced when the urgent queue is empty and when the congestion controller permits.

After both the urgent queue and the retransmission queue become empty, the residual bandwidth is used to serve the normal traffic.

Scheduling across Connections

For all the connections with buffered data, the total request rate is first calculated. Then, each individual requested rate is normalized against the total rate. The resulting number is interpreted as a probability to transmit a packet from that connection. In other words, a packet is chosen randomly from the backlogged connections according to the probability derived from its normalized rate. Hence, if the pipe has enough capacity, the transport satisfies the average rate requirement for each connection. If the pipe does not have enough capacity, rates are allocated to connections using the required rates of connections as weights. The normal packets are subject to full congestion control.

Connection and Pipe States

(To be written)

Discussions

Alternative Protocol Design

Alternative Implementation

Alternative Algorithms

Further Research

[Xia] Ye Xia “WebTP Transport Design”
Internal Document

[RUTS98] “Requirements for Unicast Transport/Sessions (ruts) bof”, Meeting Report, IETF, December 1998.

[UNIX] Marshall K. McKusick, Keith Bostic, Michael J. Karels and John S. Quarterman. “The Design and Implementation of the 4.4 BSD Operating Systems”. Addison-Wesley Publishing Company, 1996.

[Balakrishnan] Hari Balakrishna, Hariharan S. Rahul, and Srinivasan Seshan. “An Integrated Congestion Management Architecture for Internet Hosts”

[Jac88] Jacobson, Van, “Congestion Avoidance and Control”, SIGCOMM '88, Stanford, CA, August, 1988.

[API] “WebTP Application Programming Interface (API)”

[Algo] “WebTP Algorithm Specifications”

[RFC793] “Transmission Control Protocol” RFC793, IETF

� EMBED MSDraw.Drawing.8.1 ���

� EMBED MSDraw.Drawing.8.1 ���

� Checksum for error protection is performed on all received packets. A dropped packet due to error is also interpreted as congestive loss by the transport. This undesirable coupling between congestive loss and packet dropping due to error should have very little performance impact in an environment of low error probability.

PAGE
20

[image: image4.wmf]

Application 1

Application 2

Application 1

Application 2

Host 1

Host 2

Connections

Pipe

Figure 2

[image: image5.wmf]Application

Socket Interface

Flow Management

Scheduler

Congestion

Controller

Integrated Network Monitoring

Rate

Monitor

Figure 1

Network Control

_997199870.doc
[image: image1.wmf][image: image2.wmf][image: image3.wmf][image: image4.wmf][image: image5.wmf]

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

Bottleneck Link

Network

Connections

Client

Sever 1

Server 2

_997168967

_997168985

_997168819

_998744077.doc

Control Blocks

Data Blocks

_996869170.unknown

_996868783.unknown

