WebTP: A Receiver-Driven Web Transport Protocol
Mike Chen, Rajarshi Gupta

CS268, University of California at Berkeley
mikechen@cs.berkeley.edu, guptar@eecs.berkeley.edu
ABSTRACT

WebTP is a user-centric dynamic protocol proposed for the next generation Internet. Our project addresses one of its design goals - to make the protocol client-oriented. We explain the necessity to shift paradigms into a receiver-driven model and use the ns simulation environment to test such a scheme. We also present ns and Java implementations of a WebTP agent that incorporates a receiver-oriented flow control mechanism. The chief contributions of this project are to demonstrate the feasibility of a receiver-driven scheme for flow control, and to present a working framework that makes it possible.
1. INTRODUCTION

The importance of the World Wide Web to the computing infrastructure today is absolutely critical, and yet, the foundations upon which the Internet has been built are largely ad hoc. The explosion of the web, that began as ARPA's limited and controlled experiment, has far exceeded beyond anyone’s expectation.

Most of the improvements for the Internet are built on top of the current framework and hence are constrained by the inherent limitations. The various implementations and deployment of the widely accepted HTTP/TCP is a prime example. This is unfortunate as we now have a huge installed base of web servers, routers, clients and browsers that operate within a sub-optimal framework

The hope therefore is to tackle this problem head on by designing and implementing a protocol framework for the next generation of the Internet. This new protocol, being proposed by the EECS department at UC Berkeley is called the Web Transport Protocol (WebTP). It is expected to embody the principles of incorporating the user into the transport mechanisms. It will be receiver-oriented, adaptive and dynamic and will leverage on existing work to ensure incremental deployment and congestion control.

WebTP is a major project, and this report but tries to present a tip of this iceberg. The next section is a brief description of the conceptual model and the design principles behind WebTP, while section 3 presents the reasoning behind the shift to a receiver-oriented model. The chief contributions of this project are presented in the remaining sections. Section 4 deals with the issues of transferring control to the receiver and section 5 outlines the steps taken in this project to achieve that objective. The experimental setup in ns is discussed in Section 6. The main experimental results are presented in Section 7 while the Java implementation of WebTP is dealt with in Section 8. We conclude and present an outline of the future direction of work in Sections 9 and 10.

2. CONCEPTUAL VIEW OF WEBTP

The ultimate objective of the project is to improve the protocol architecture so that it enhances user satisfaction. We conceptualize a model as shown in Fig.1.

[image: image4.wmf]Server

Network

Document

Resources

Display

Client

Utility

Function

User Rules

Satisfaction

interaction

Fig 1 Conceptual Model of WebTP

The user requests a document that resides on the server. It has to pass through the network that has its set of resources. Once the document reaches the client, it is affected by a set of rules incorporated by the user. Eventually it gets displayed, and the satisfaction provided to the user is determined by the utility function that acts on the individual components of the page. This setup needs to be able to cater to changes to any of the above components and also be dynamic enough to adapt to changes on the fly. The eventual goal is to optimize the transfer to provide maximal user satisfaction.

The design of WebTP will incorporate these basic design principles:

· User Centric Optimization
WebTP strives to maximize satisfaction for the end-user and therefore attempts to include the end-user in the design loop. The exact form of the transaction is decided upon only after incorporating the user preferences – even introducing learning through observation, if possible. A detailed treatment of this aspect may be accessed at http://www.path.berkeley.edu/~guptar/webtp/
· Application Level Framing
Application Level framing (ALF) [CT90] will be used to optimize the transport for the purposes of the application. This can considerably alleviate the adverse effects of packet drops, reordering and delay jitter, especially for applications that are robust enough to handle such abnormalities.

· Congestion Management
We will utilize a framework based on the extensive congestion control algorithms that have been developed for TCP and use the knowledge gained by years of experience with these. The congestion control algorithms should also be “TCP-friendly” [Mah97] to ensure that the new protocol does not adversely affect existing TCP flows.

· Receiver-based Scheme
By moving state and control to the client, the system becomes much more scalable and flexible. It also provides more control to the user. We will try to implement a scheme that keeps as little state as possible at the server.

The remainder of this report concentrates on the issues of Receiver-Driven Protocols and present the results achieved in these directions.

3. ADVANTAGES

A receiver-driven approach to communication has many compelling features to it which has led to its adaptation in a variety of frameworks. This section looks at some of the important reasons to adopt a receiver-controlled protocol.

· Reduced Server State: Moving the responsibility of flow-control to the client has the effect of reducing the amount of state required to be kept at the server. With the responsibility of measurements and calculations shifted to the client, the server can now allocate its finite resources to service more flows. Such a system is thus much more suited to scaling.

· Incorporating User Control: It is vital to keep constant note of the fact that the eventual purpose of any web transaction is to fulfil some user command. And an obvious way to enhance such a transport is by including the user into the “transaction loop”. Needless to say, the server has little knowledge about the preferences of the user and so a sender-based scheme (like TCP) is unable to utilize the user’s information.

· Dynamic Network Resource Allocation: A receiver-based scheme can allocate its network resources depending on the observed client state. This may include user commands (stream 6 must get 60% of available bandwidth), link knowledge (connected to a modem, total available bandwidth (56.6 kbps) or hardware information (total battery power). Moreover, allocation of the network resources can be completely dynamic, as determined by the client.

· Adaptive Rate Control: With the flow control located at the client, the flow parameters and algorithms may be adapted dynamically as the client learns more about the network and the resources. Since there are typically far fewer flows at a client as opposed to a server, this is more plausible to implement at a client.

· Powerful Clients: In today’s view of the Internet, more and more computing power is distributed to the periphery as the end-hosts (read PCs) become extremely powerful. Moreover, much of this computing resource is regularly underutilized. It therefore makes sound engineering sense to shift the onus of flow control to the powerful clients. This gives powerful clients the independence to choose more sophisticated flow control methods, while thin clients (like PDAs) can still use simpler schemes.
While this section makes a strong argument for adopting a receiver-based scheme, we must remember that the server always needs to maintain some state (e.g. state sharing scheme in NetBLT [CLZ87]). After all, the packets will have to be inserted into the network at the server end and so bookkeeping of quantities like sequence numbers, acks received etc will remain with the sender. What our proposal advocates is effectively a splitting of the flow state between the server and the client – thereby leading to better control and more efficient flow handling.

4. CONTROL AT RECEIVER

The challenge of controlling the dynamics of a flow from the receiver end involves three parts of a problem, all of which need to be solved.

· How to get the same (or better) information as the sender available to the receiver side

· What action to take based on the information

· How to convey the desired flow parameters to the sender in time

We claim that the first of these challenges is easily solved, and show it in this section. We present feasible schemes for the second, as also provide an implemented framework [Sec 6]. For the third problem, we simulate a solution based on explicit notification [Sec 5] and do not address the complications in this report.

In order to carry out any sort of control algorithm, it is necessary for the controlling body to have access to the current state parameters. In other words, the receiver needs to estimate the current state of the network, in a manner at least as accurately as the server does. Thus, comparing with a server-driven scheme, we need to estimate

· bandwidth

· loss rate

· RTT

Of these, bandwidth and loss rate calculations are by definition better performed at the receiver. After all, our parameters of interest are the bandwidth achieved at the receiver and the loss rate amongst the arriving packets. Counting packets at the receiver will therefore always give us the actual values for the rate and loss parameters, while the sender has to estimate these.

Effectively calculating the round-trip-time at the receiver is slightly trickier. Observe that in a sender-based scheme like TCP, the sending time TS of a packet is stamped on to the packet (equivalently, the sequence number is put on the packet and the sending time of the sequence number is stored). This timestamp is copied on to the ack that is sent in response to the packet. Let’s say that this ack reaches the sender at time TR. Then, as shown in Fig 2a, the RTT as calculated at the receiver is given by:

TS = Time Sent

TR = Time Received

RTTS = TR - TS

We implement the dual of this scheme for a receiver-based RTT calculation mechanism. The send-time TA of an ack is timestamped on the ack. This timestamp is copied on to the next packet that the sender transmits to the receiver. To make the scheme more general, we do not assume that a packet is sent every time an ack comes back, and in stead introduce a new parameter TH=Held Time, which captures the time between the arrival of an ack and the transmission of the next packet. TH too is sent with the next packet, which arrives at the receiver at time TO.

[image: image5.wmf]Sender-Based

Receiver-based

S

R

Packet / Ack

Timestamp

S

R

heldtime

RTTs

RTTr + heldtime

Fig 2b

Fig 2a

Then, as shown in Fig 2b, the RTT as calculated at the receiver is given by:

TA = Ack send time

TO = Pkt receive time

TH = Held Time

RTTR = (TO – TA) – TH
Theoretically, RTTR = RTTS since they measure the round-trip time taken to go across a network and come back. However, in reality, due to the asymmetry of the network, there may be differences in the RTT calculation.

To test our algorithm, we took the trace of a sample TCP file transfer in ns and logged each packet and ack received, together with the timestamp. We then ran a sender-based RTT calculation to generate a plot of the perceived RTT at the sender vs. time. Next we evaluated the received-ack data file and simulated the existence of the times TA and TH. This was done by locating the pkt-sent-time in the sender pkt plot and figuring out the last ack received before the pkt was sent. We similarly plotted the perceived RTT at the receiver vs. time.

From the plot (Fig 3) we can see that the RTT calculated at the sender (blue stars) correspond very closely to the calculations at the receivers (red circles). Indeed, most of the points are effectively indistinguishable. A closer look at the progression of the perceived RTT over a shorter time-span from 2.5 sec to 5.5 sec (Fig 4) leads us to the same conclusion.

[image: image6.wmf]Fig 5 Experimental Setup

While this setup seems to assume a perfect view of the world with every packet and ack reaching its destination, the current world is indeed not as efficient. Packets and acks are often lost and these must be taken into account while correctly estimating RTT. Fortunately, much work has gone into this area and Karn’s algorithm [KP91] is equally applicable to the receiver-side. This tells us which RTT values to consider and which to discard, and also the procedure to calculate the smoothed estimate of the round-trip-time (SRTT). It is this algorithm which we use for our calculations in this project. Similar plots for the SRTT too shows the calculations at the receiver side to match the sender side.

5. DYNAMICS OF RECEIVER-DRIVEN RATE CONTROL

For a new breed of flows to be deployable on the Internet, they not only need to be efficient and fair [CJ89] but they should also be “TCP-friendly” [Mah97]. In a world that is largely dominated by TCP, our flows need to interact well with TCP flows and ensure fair sharing of resources.

Therefore it was reasonable to use TCP as a starting point in our WebTP agents and see how we could alter the schemes to our convenience. The existing TCP algorithms which we implemented were as follows:

· Slow Start: The rate at which to send packets is started at a minimum and increased exponentially at the beginning of the connection – allowing us to reach the bandwidth limit quickly. Once the first packet drop is noticed (hinting congestion) the slow start is stopped.
· Additive Increase / Multiplicative decrease: After the period of Slow Start, we move into Congestion Avoidance phase when we always try to increase the rate to exploit any extra bandwidth available to the system, but now the increase is linear. However, on noticing a dropped packet, the rate is cut by a multiplicative factor to back off rapidly from the congested state.

An additive increase / multiplicative decrease scheme was shown by Chiu and Jain [CJ89] to be the only scheme to achieve both efficient and min-max fair performance for competing flows on a single bottleneck link. We observe that their analysis is independent of the type of flows and hence it motivated us to use this algorithm

RTT based Rate Adaptation: We also used an additional parameter to detect congestion in the network- by comparing the RTT with the current SRTT. SRTT gives us a smoothed measure of the network and RTT tells us the immediate situation.

Thus, during congestion avoidance,

RTT > SRTT (RTT is increasing (Congestion

RTT < SRTT (RTT is decreasing (Free bandwidth

We try to tap this extra information into our rate control algorithm, above and beyond the additive increase / multiplicative decrease scheme. We use a hysteresis scheme whereby we marginally decrease the rate if the RTT is significantly below the SRTT and increase the rate in the reverse situation. The change in the RTT signifies queue buildup in the network, and is an early indicator for congestion. However, we do not want to react too early and too often, and so we use the parameters (1 and (2 to soften our reaction. Furthermore, by following the methodology used in Karn’s algorithm [KP91], we do not consider any RTT estimated during retransmissions.

So the complete algorithm appears as:

if (slow_start)

rate = oldrate+1

//exponential increase

else

if (dropped_packet)

rate = oldrate*(1

//multiplicative decrease

else

rate = oldrate + (/oldrate
//additive increase

if (rtt < srtt(1-(1))

rate = oldrate + (/oldrate

else if (rtt > srtt(1+(2))

rate = oldrate*(2

end

end

end

oldrate = rate

Here 0 < (1,(2 < 1, 0 < (1,(2 << 1, ((1
Note that exponential increase during slow-start is achieved by adding 1 to the rate, and not by multiplying by a factor. This is due to the clocking mechanism of the protocol, whereby every ack received increases the rate, so adding 1 to the rate every time gives an exponential effect. For exactly the same reasons, we increase the rate by (/oldrate while in the additive increase mode.

Effectively we try to achieve better adaptability to congestion than TCP. When congestion is building up, this scheme detects it sooner and acts accordingly. On the other hand, it also adapts more quickly to newly available bandwidth by increasing the rate faster.

While this algorithm has some intuitive reasoning behind it, its actual effectiveness can only be justified after extensive experimentation. One advantage of this is that it does not require any new measurements and relies solely on values already calculated. Furthermore, the amount of processing too is minimal and would be extremely simple to implement. It would even be backward compatible. On the other hand, extra control might make the flow unstable and force it to undergo too many fluctuations. As seen from our experiments (summarized in Section 7), the extra control works well in most cases, and hinders progress in a few others.

This scheme could be valuable for us in extending our protocol over varied environments like wireless. While the experiments and simulations have given us much insight about its dynamics, we have not completed exploring the entire problem space. This extension, though, points out the feasibility and usefulness of adding incremental improvements to our protocol and the ease with which these changes may be incorporated for a receiver-driven approach.

A compelling advantage in using a receiver-driven scheme will be its ability to choose algorithms based on the situation. It is well-documented that TCP performs poorly over wireless links [BSAK95] because of high loss rates due to external factors - TCP interprets every loss as due to congestion and unnecessarily cuts back on its rate. A client, aware of its own wireless mode of connectivity, can have the freedom to choose its suitable flow control algorithm. For instance, such a client could switch off the multiplicative decrease part of the algorithm and rely on the RTT/SRTT comparison to control its rate.

Moreover, the parameters (1, (2, (1 and (2 play crucial roles in the algorithms. Similar parameters for TCP have been decided upon by years of experimenting, intuition and a certain degree of ad hocness. Unfortunately, in spite of all the effort, none of these rigid parameters can hope to satisfy the requirements for every situation. A receiver-oriented scheme can afford to dynamically alter these parameters during a connection (using knowledge gained during its course), thereby attaining better performance.

The ability to alter the flow algorithms thus enables the receivers (and henceforth the protocol) to achieve stronger performances. It also leaves the door open for further improvements and enhancements, even on an application-specific level.

6.
EXPERIMENTAL SETUP

In order to test our receiver-driven schemes, it was imperative for us to have a controlled testbed where we could alter the network parameters and also experiment with variations in control algorithms. The simple setup that we used is outlined below.

[image: image7.wmf]Fig 5 Experimental Setup

For our experiments, we have a network cloud (as shown in Fig 5) which is modeled as a single link whose characteristics we control:

· bandwidth (10 Mbps, 1.5 Mbps, 56.6 kbps)

· latency (10ms, 100ms)

· loss rate (1%, 2.5%)

· queue size (10, 20, RED3-8)

· queue management policy (Fair Queuing, RED, DropTail)

By varying the characteristics of the link, we are able to model different networks. For instance, a 1.5 Mbps link with a 10ms latency models a T1/ADSL, a 56.6 kbps link is a modem, while the 10 Mbps fast link simulates an Ethernet.

We also varied the number of interacting WebTP and TCP and introduced the flows at different times to study the interaction among several flows. We utilized the scheme of suiting algorithms for the current state by varying the parameters of the flow control algorithms.

Our first implementation is modeled using the ns network simulator. We implemented the WebTP agents in ns using Tcl, and used the built-in ns TCP objects. The actual sending and receiving rates achieved are obtained by post-processing custom trace files which capture the arrival and departure of every packet and ack.

In order to satisfy the WebTP design goals, the flow is controlled by the receiver. All calculations are carried out at the receiver (as specified in Section 4) and it is the receiver that decides on the resultant rate (as outlined in Section 5). For the purposes of the experiment, this desired rate is explicitly transmitted to the sender by piggy-backing this information with the acks. The sender, upon receipt of an ack, alters its rate by adapting its inter-packet delivery-time.
This scheme works well in our setup since the acks do not suffer degraded performance caused by congestion and all the rate control information is delivered reliably. Although this assumption may not hold in real life, we should note that this explicit delivery of the desired rate information is just one of the many possibilities to control the rate. It is quite possible to use some sort of TCP-like Congestion Window scheme, or other methods to achieve the same effect. Our purpose was to study the effect of various flow control schemes and we chose this method due to its ease of implementation.

We also implemented WebTP agents in Java to test the algorithms on the real network. However, in order to have a meaningful set of values, we need to have precise control of the network. Although we came up with a couple of schemes to implement the situation, they turned out to be infeasible at the current time due to resource constraints.

Nonetheless, the Java implementation of the WebTP agents serves two vital purposes:

· Running these across different machines on separate subnets allows us to get a realistic view of how the system adapts to real network traffic

· They will be invaluable when we set up the real WebTP testbed to carry out extensive tests over the Internet.

In the subsequent plots, we plot the rate at which the sender sends the packets vs. time. Rate at sender is calculated with a sampling interval of 0.05 sec, by considering a window of size of 1 second (i.e. every 0.05 second, we count the number of bytes transferred during the last 1 second). By plotting the sending rate of each connection over time, we can observe the individual flow characteristics and also their interaction.

The notable points of observation from a rate plot are:

· Efficiency: How the total bandwidth is utilized by all the connections.

· Stability: How much each flow rate deviates from its allocated share

· Fairness: Whether the bandwidth is allocated fairly among the competing links. For this measure, we use the Min-Max Fairness Criterion outlined by Chiu and Jain [CJ89] and plot the fairness of the bandwidth allocation over time. The min-max criterion is given by the following formula:

At any instance of time, for
[image: image1.wmf]n

 competing flows
[image: image2.wmf]n

X

X

X

L

,

,

2

1

,

Fairness =
[image: image3.wmf]å

å

=

=

÷

ø

ö

ç

è

æ

n

i

i

n

i

i

X

n

X

1

2

1

2

7.
RESULTS

With the large number of variables in the system (connections, parameters, link characteristics), it is not possible to present all the results. However, as the experiment progressed, we learnt a lot about the interaction of our system with TCP and were able to verify many expected and unexpected properties. We summarize the chief results obtained, together with the accompanying plots. A more detailed and comprehensive study will be done over this summer and will be presented as a Research Report.

7.1 A number of WebTP agents interact well amongst themselves in all circumstances

As we had hoped, a number of WebTP agents (with no TCP flows) competing for the bottleneck link interact well over different link characteristics and different queue management policies. The flows achieve good utilization of the link, and are quite stable and fair.

The plots shown in Fig 6 show the interaction between 3 WebTP flows starting at 0, 1 and 15 seconds respectively and competing across the 1.5 Mbps link. During the initial period (when only two flows are in progress) each flow stabilizes around 750 kbps. Once the third flow joins the fray, they cut their rates to 500 kbps. The exponential growth rate during slow-start is also visible here.

The queue management policy for this case was Random Early Detection (RED) with its minimum and maximum thresholds set to 3 and 8. The parameters for the algorithm used were (1=0.75, (2=0.95, (1=0.2, (2=0.2. The plot of the fairness (Fig 6.6) that starts at 15 seconds (when all three flows are in progress) validates our claim that the interaction is fair.
[image: image8.wmf]Sender-Based

Receiver-based

S

R

Packet / Ack

Timestamp

S

R

heldtime

RTTs

RTTr + heldtime

Fig 2b

Fig 2a

7.2 With Fair Queuing, any combination of WebTP and TCP works well

The FQ scheme of queue management allocates a virtual queue for each flow with a unique flow id. Thus, packets of any flow compete only with packets of the same flow, ensuring equitable distribution of bandwidth. Our scheme works well under the umbrella of Fair Queuing in its interactions with TCP.

In the plot given below (Fig 8), two WebTP flows compete with a single TCP flow for a 10 Mbps link with FQ. Although the TCP flow (starting at 6 sec) shoots up initially due to a faster rate of increase during slow-start, all the rates soon converge to about 3.3 Mbps.

The WebTP parameters for this experiment may be summarized as (1=0.85, (2=1, (1=0.1, (2=0.15. In the plot the TCP is the red curve. The Fairness graph (Fig 9) is almost not visible since the fairness of the scheme lies very close to 1 for the entire non-transient period

[image: image9.jpg]0.08

0.07

0.06

0.05

0.04

RTT at Source and Recetier SRO=Dlue star RGVred circle
: : : , : 007,
20 oo ooss|
H
.
& o
SRR
CaSetageteTetasingepetesatatetsrars S0
846%026950,0. & 55 6o oossf
L %0880260006800,9,9,0,9.5. 0,
@, LSS BeEad etpPeBat 0.0 9
(b, e 0a®aeEsel0000s 20t s0e 00000000000y & Ay
. L
5y 09.&.@0@&@0@9.,%0,“3 3,@ 0.05
Lorpppm &0 IE g o o 20,50,
Friaarasassnnnnanmn, oo rer
Tow 2 s - H
o *-@3029393-;asugsgSgsg:;;sg-;s 830%0 0¥ s%s °9
0 a*ae5egelel ooef-
5059, o i H o c2olle
5 Petes © 03
3-5.’:‘??:’3 O A TR
(b e0aCeaegosetetaletereletesye o o o €8s 20 ®s 5 oossl
$¢ @
225 o BEPS T
T s PP ey 0.03f
H O
HLN
»
sos0s000s0s0s0soneseee oozsf
’ g . ’ ' 5 i g : : g
5 5 1o 15 20 2 % %5 s a5 ’ s 5
Time in seconds Time in seconds
Source
0 Recelver

Fig 3. RTT at Source and Receiver

Fig 4. RTT at Source and Receiver (Zoom View)

55

7.3 WebTP allows dynamic resource allocation
Having the control of the flow at the receiver allows dynamic allocation of the resources. As a simple example, it is easily possible to specify a limiting bandwidth on a per-flow basis, and ensure that an important flow gets a better share of the resources. Of course, it would be ideal to be able to set a minimum bandwidth for a flow too, but that would require a whole other resource reservation protocol.

This aspect of WebTP is well expressed in the next four figures. In Figs 12 and 13 we have a WebTP flow and a TCP flow which share a 1.5 Mbps link. The share is equitable until 20 sec, when the WebTP flow is explicitly limited to 200 kbps. As seen, flow 1 quickly drops down to its allotted rate and flow 2 efficiently picks up the slack. A similar phenomenon is replayed in Figs 14 and 15 on three WebTP flows when two of them are restricted to 200 kbps each at time 20 sec.

In each row, the left plot denotes the scheme where the network link uses FQ for queue management, while the right plot shows the same with RED. As expected, the FQ mechanisms allows for a much smoother flow – while in RED even the limited flow gets occasional packet drops, leading to some fluctuations in the rate.

[image: image10.wmf]Server

Network

Document

Resources

Display

Client

Utility

Function

User Rules

Satisfaction

interaction

Fig 1 Conceptual Model of WebTP

7.4 Set of WebTP parameters that work satisfactorily

During the course of our experimentation, we were trying to come up with a set of WebTP parameters that interact well with TCP. The “magic” values given by (1=0.1, (2=0.15, (1=0.85, (2=0.95 seem to satisfy all our desired criterion of efficiency, stability and fairness. Furthermore, a WebTP agent incorporating these parameters react very well to other TCP flows. These are likely not the unique or optimal set of values. However, this clearly shows that with further experience, we should be able to propose a complete WebTP protocol that is efficient, stable, fair and also TCP-friendly.

In the plot shown in Fig 16, three WebTP flows starting at 1,1 and 15 seconds interact with a TCP flow starting at 6 seconds, over a 1.5Mbps link implementing a RED queue. As can be seen, all the flows converge to about 400 kbps and work well with each other. The plot of the fairness (Fig 17) also shows the value to remain above 0.9 for the entire non-transient period (after all the flows are introduced).

[image: image11.jpg]Rate in ko's

1200

1000

800

600

400

200

RATE at SENDER

Faimess during the non-—transient period

08k

08F

07f

06F

04f

0ap

02F

(XIS

10

15

Fig 6.

20 25
Time in seconds

3 webTP Flows

a0

E3

40

20

25
Time in seconds

Fig 7. Fairness

20

40

8. JAVA IMPLEMENTATION

We implemented the WebTP objects in Java since we wanted to test our simulated algorithms on the real network. However, in order to carry out any meaningful set of experiments, it was necessary to be able to control (or at least monitor) the exact network state.

We considered several approaches. We discussed the possibility of using the setup for the INDEX [INDEX] project, but it was not well suited for our necessities. A more flexible scheme was to use nse to model the Internet and run WebTP on a dedicated network across a machine with IP-Forwarding turned off. However, this was difficult to implement given the resource constraints.

So we had to settle for carrying out the experiments without having control over the network, and in stead, we ran UDP and TCP flows to estimate the network status. Although these results are not easily reproducible and reliable, these experiments showed that the WebTP flows interacted well (with other WebTP flows) and also adapted efficiently to external network conditions. A WebTP lab will be created in the near future, where we will set up the actual WebTP agents and carry out the desired tests across a controlled environment.

In Fig 18, we had three WebTP agents running across the UCB network. The senders were located on the MASH subnet in the CS department while the receivers resided in the SIMS department. As we can see, the three flows stabilized to an optimal rate of about 200 kbps each. The TCP/UDP measurements at the time showed the maximum throughput to be about 1 Mbps. The fairness plot (Fig 19) clearly shows the three flows to have a fair share of the bandwidth, at least amongst themselves.

Since Java does not allow access to the IP layer, the agents had to be built on top of UDP, and adds additional packet processing overhead. Also, our implementation uses an elegant object-oriented design that may not be the most efficient. Lastly, the thread context-switching overhead incurred by the Java VM on FreeBSD may be significant. We suspect that the throughput of the WebTP flows may be limited by these factors.

[image: image12.jpg]in ks

Rate

6000

5000

4000

2000

2000

1000

RATE at SENDER

Faimess during the non-transient period

08k

08F

04f

(XIS

10 15 20 25 EY
Time in seconds

Fig 8. Two webTP and One TCP Flow

E3

40

20

25

20

Time in seconds

Fig9,

Fairness

40

9.
CONCLUSION

In this project, we studied the WebTP design principle of a Receiver-Driven scheme. We motivated the efforts by stating the reasons for the paradigm shift and showed that it is feasible. We showed how the parameters of interest may be correctly estimated at the receiver. We then presented the algorithms that have been implemented for WebTP – both the TCP-like schemes of slow-start and additive increase/multiplicative decrease and also a new scheme based on RTT and SRTT comparison. We also outlined our experimental setup and the variety of tests we performed, both using the ns network simulator and over the real network using the Java implementation. Finally, we presented the major simulation and experimental results in logical groups that lead to specific conclusions.

Our versions of the WebTP agents have fair and effective flow control, and interact well with TCP under many circumstances. This gives us bright hope in the success of this scheme and we are convinced that such a scheme will indeed become viable for deployment over the Internet.

10. FUTURE WORK

· WebTP is a very large project and much remains to be studied. In particular, we intend to extend this project in the following directions:

· Perform a comprehensive study of the RTT/SRTT scheme to evaluate its effects on congestion control.

· Study the effect of dropped acks in the performance of WebTP.

· Experiment with algorithms that dynamically adapt control parameters to network conditions.

· Consider other metrics for flow comparison (e.g. TCP-friendliness [FF98]).

· Tweak the Java implementation to have lower processing overhead and try other platforms with faster JVMs.

· Extensively test WebTP flow control over the Internet.

REFERRENCES
 [BSAK95] H. Balakrishnan, S. Seshan, E. Amir, R. Katz, Improving TCP/IP Performance over Wireless Networks, In Proceeding of the 1st ACM Conf. on Mobile Computing and Networking, Berkeley, CA, November 1995.

[BSSK97] H. Balakrishnan, S. Seshan, M. Stemm, and R. H. Katz, “TCP behaviour of a busy web server: Analysis and improvements,” Proc. Infocom ’98, March 1998.

[RFC1379] R. T. Braden, “Enhancing TCP for transactions,” Request for Comments RFC-1379, Nov 1994.

[CJ89] D. Chiu and R.Jain, “Analysis of the increase and decrease algorithms for congestion avoidance in computer networks,” Computer Networks and ISDN Systems, v.17, 1-14, 1989.

[CLZ87] D. Clark, M. Lambert and L. Zhang, “NetBLT: A high throughput transport protocol,” Proc SIGCOMM ’87 Conf. ACM, pp 353-359, 1987.

[CT90] D. Clark and D. Tennenhouse, “Architectural considerations for a new generation of protocols,” Proceedings of SIGCOMM ’90, Philadelphia, PA, Sep 1990.

[F+96] R. Fielding, H. Frystyk, T. Berners-Lee, J. Gettys, and J. Mogul, “Hypertext transfer protocol - HTTP/1.1,” Internet Request for Comments RFC, June 1996.

[F+97] S. Floyd, V. Jacobson, C. Liu, S. McCanne, L. Zhang, “A Reliable Multicast Framework for Ligh-Weight Sessions and Application Level Framing”. IEEE/ACM Transactions on Networking, 1997.

[FF98] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control in the Internet,” submitted to IEEE/ACM Transactions on Networking, Feb 1998.

[G97] J. Gilbert, “Optimizing web access over modem (and wireless) links using client-side proxies,” EE228A Project Report, UC Berkeley, Dec 1997.

[Hei97] J. Heidemann, “Performance interactions between P-HTTP and TCP implementations,” ACM Computer Communication review, v. 27, no. 2, April 1997, pp. 65-73.

[INDEX] “The Internet demand experiment,” information available at http://www.index.berkeley.edu.

[Jac88] V. Jacobson, “Congestion avoidance and control,” Proceedings of SIGCOMM’88, Palo Alto, CA, Aug 1988.

[KP91] P. Karn and C. Partridge, “Improving Round-Trip Time Estimates in Reliable Transport Protocol”. ACM Transactions on Computer Systems (TOCS), Vol. 9, No. 4, pp. 364-373, November 1991.

[Mah97] J. Mahdavi, S. Floyd, “TCP-Friendly unicast rate-based flow control,” Technical note sent to the end2end-interest mailing list, Jan 8, 1997.

[Mo98] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” http://walrandpc.eecs.berkeley.edu/Mo1.pub.ps.

[N+97] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. W. Lie, C. Lilley, “Network performance effects of HTTP/1.1 CSS1, and PNG,” available as http://www/w3/org/TR/note-pipelining.

[NS] “Network simulator – ns’, information available at http://www-mash.cs.berkeley.edu/ns/
[Pad98] V. Padmanabhan and R. Katz, “Addressing the challenges of web data transport,” Submitted for publication, Jan 1998.

[PK98] V. Padmanabhan and R. H. Katz, “TCP fast start: a technique for speeding up web transfers,” available as http://www.cs.berkeley.edu/~padmanab/papers/gi98-submit.ps.

[PM95] V. Padmanabhan and J. Mogul, “Improving HTTP latency,” Computer Networks and ISDN Systems, v.28, Nos. 1 & 2, Dec 1995, pp. 25-35.

[Pax97] V. Paxson, “Automated packet trace analysis of TCP implementations,” ACM SIGCOMM ’97, Sep 1997, Cannes, France.
� EMBED PowerPoint.Show.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED MSDraw.Drawing.8 ���

1
2

[image: image13.jpg]Rate in ko's

Rate in Ko's

RATE at SENDER

RATE at SENDER

1600 - - T T T T T 1600 - - T T T T T
1400 1400
1200 1200
1000} 1000}
k]
800 € so0l-
£
&
s00f- s00f-
400 400
200 200
0 0
o 5 10 15 20 25 20 3 s o 5 10 15 20 25 20 3 s
Time. in seconds Time. in seconds
= WebTP

1500

Fig 12. WebTP1 restricted to 200 kbps at 20 sec (FQ link)

RATE at SENDER

1000

500

20
Time. in seconds

25 a0 E3

Fig 14. WebTP182 restricted to 200 kbps at 20 sec (FQ link)

40

I\

Fig 13. WebTP1 restricted to 200 kbps at 20 sec (RED link)

RATE at SENDER
1600 T T T T T T T

1400

1200

1000

800

Rate in ko's

600

400

200

20
Time. in seconds

25 a0 E3 40

. WebTP1&2 restricted to 200 kbps at 20 sec (RED link)

[image: image14.jpg]Rate in ko's

1200

1000

800

600

400

200

RATE at SENDER

Faimess during the non-transient period

08k

08F

07h

06F

0ap

02F

(XIS

Fig16.

Time in seconds

3 WebTP and 1 TCP (over RED)

0
20

WebTP1
WebTP2
WebTP3
TCP

22 24 2 28 a0 a2 aa E3 EJ 40
Time in seconds

Fig17. Fairness for 3 WebTP and 1 TCP

[image: image15.jpg]Rate in ko's

250

200

150

100

50

RATE at SENDER

o 2) w0 5
Time. in secands
Fig18. 3 WebTP flows over a real network

60

Fainess

Faimess during the non-transient period

0.98

0.96

0.84

0.92

08k

0.88

0.86

0.84

0.82

VT

08
15

20

25

20 E3 40 45
Time in seconds

50

55

60

Fig 19. Fairness for WebTP over real network

_956170847.unknown

_956662852.ppt

Server

Network

Document

Resources

Display

Client

Utility Function

User Rules

Satisfaction

interaction

Fig 1 Conceptual Model of WebTP

_956662893.ppt

Sender-Based

Receiver-based

S

R

Packet / Ack

Timestamp

S

R

heldtime

RTTs

RTTr + heldtime

Fig 2b

Fig 2a

_956662939.unknown

_956170914.unknown

_956170837.unknown

